# A New Organic-Cation Cyclotetraphosphate $\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ : Crystal Structure, Thermal Analysis, and Vibrational Spectra 

E. H. Soumhi,*, I. Saadoune, ${ }^{*}$ and A. Driss $\dagger$<br>*Faculté des Sciences et Techniques Guéliz-Marrakech,University Cadi Ayyad, Avenue A. El Khattabi, BP 618, Marrakech, Morrocco; and $\dagger$ Faculté des Sciences de Tunis, Département de Chimie, Campus Universitaire, 1060 Tunis, Tunisia, Tnunisia

Received July 11, 2000; in revised form September 27, 2000; accepted October 13, 2000; published online January 3, 2001


#### Abstract

A new organic-cation phosphate of $\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot \mathbf{4 \mathrm { H } _ { 2 } \mathrm { O }}$ has been obtained. The crystal structure determination shows that this compound crystallizes in the triclinic system, space group $P-1$, with the following unit cell parameters: $a=9.147$ (3) $\AA$; $b=9.258(3) \AA ; c=8.974(3) \AA ; \alpha=79.92(3)^{\circ} ; \beta=117.41(3)^{\circ}$; $\gamma=116.58(3)^{\circ} . \mathbf{P}_{4} \mathbf{O}_{12}$ cycles, which present the strongest distortion in this kind of materials, are connected through $\mathrm{O}_{\mathrm{w}}-\mathrm{H}-\mathrm{O}-\mathrm{P}$ hydrogen bonds, so that bidimensional layers parallel to the $a b$ plane are formed. These layers are themselves interconnected by means $\mathrm{N}-\mathrm{H}-\mathrm{O}-\mathrm{P}$ hydrogen bonds originating from the $\left(\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4}\right)^{4+}$ cations forming a three-dimensional network. The hydrated character of this phosphate is confirmed by the coupled TG-DTA thermal study which shows the successive loss of water molecules. The molecular arrangement within the structure has been confirmed by the IR spectroscopy. © 2001


## Academic Press

Key Words: cation organic; phosphate cyclotetraphosphate; crystal structure; hydrogen-bond; IR spectroscopy; TG-DTA.

## INTRODUCTION

Organic-cation phosphates have been intensively studied due to their many uses in various fields such as biomolecular sciences, catalysts, fuel cells, liquid crystal materials, nonlinear optics, and protonic conductors (1-6). Nevertheless, a bibliographical study on the organic condensed phosphates, and especially on the cyclotetraphosphates based on secondary amines, reveals that this field remains practically unexplored. To our knowledge, only a few compounds are characterized with the cyclic $\left(\mathrm{P}_{4} \mathrm{O}_{12}\right)^{4-}$ anion (7). Most organic-cation phosphates are formed essentially in the way of H -bonds between phosphoric anions and organic groups which contain generally donor centers. As shown by several works on this type of material, water molecules

[^0]also play an important role for their structure cohesion and stability.

In the present paper, we report a detailed structural investigation of a new organic-cation cyclotetraphosphate with a cyclic amine, 1, 4, 8, 11-tetraazacyclotetradecane, $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}$, which contains four donor centers. In addition, the compound has been characterized by thermal analysis and IR spectroscopy.

## EXPERIMENTAL

Single crystals of $\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ have been prepared in two steps. An aqueous solution of cyclotetraphosphoric acid was first prepared by passing a solution of $\mathrm{Na}_{4} \mathrm{P}_{4} \mathrm{O}_{12}$ through an ion-exchange resin in its protonated state (Amberlite IR 120). The sodium salt $\mathrm{Na}_{4} \mathrm{P}_{4} \mathrm{O}_{12}$ was obtained by adding an aqueous solution of sodium sulfide $\mathrm{Na}_{2} \mathrm{~S}_{(\mathrm{aq})}$ to $\mathrm{Cu}_{2} \mathrm{P}_{4} \mathrm{O}_{12}$. The obtained $\mathrm{H}_{4} \mathrm{P}_{4} \mathrm{O}_{12}$ acid solution was then added drop by drop to the $1,4,8,11-$ tetraazacyclotetradecane amine at room temperature up to pH 7.

The so-obtained solution was then slowly evaporated until the formation of large colorless plates of $\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ which were stable under normal conditions of temperature and relative humidity.

Single-crystal data were collected on an Enraf-Nonius diffractometer using graphic-monochromated $\operatorname{Mo} K \alpha$ radiation $(8,9)$. A preliminary single-crystal investigation was performed using the Weissenberg technique in order to determine the symmetry and the space group. Main crystal features and all the experimental parameters used for the X-ray data collection and the structural determination and its final results are summarized in Table 1.

Thermal analysis measurements were performed, in air atmosphere, at a heating rate of $2^{\circ} \mathrm{C} / \mathrm{min}$ using a Setaram TG-DTA 92 thermoanalyzer. The infrared spectra were recorded with a Perkin-Elmer IR-983 spectrometer using the KBr absorption technique.

TABLE 1
Main Crystallographic Features, Parameters Used for the X-ray Collection, Strategy Used for the Crystal Structure Determination, and Its Final Results

| Crystal data |  |
| :---: | :---: |
| $\mathrm{C}_{10} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{P}_{4}$ | MoK $\alpha$ radiation |
| $M=592.31 \mathrm{~g} \mathrm{~mol}^{-1}$ | $\lambda=0.71069 \AA$ |
| Triclinic | Cell parameters from 25 reflections |
| Space group: $P-1$ | $\theta=10.5-14^{\circ}$ |
| $a=9.147(3) \AA \quad \alpha=79.92(3)^{\circ}$ | $\mu=0.394 \mathrm{~mm}^{-1}$ |
| $b=9.258(3) \AA \quad \beta=117.41(3)^{\circ}$ | $T=293 \mathrm{~K}$ |
| $c=8.974(3) \AA \quad \gamma=116.58(3)^{\circ}$ | Plate |
| $V=602.9(3) \AA^{3}$ | Dim:: $0.30 \times 0.14 \times 0.10 \mathrm{~mm}$ |
| $Z=1$ |  |
| $D_{x}=1.631 \mathrm{mgm}^{-3}$ | Colorless |
| Data collection |  |
| CAD-4 Diffractometer | $R_{\text {int }}=0.0152$ |
| $\omega / 2 \theta$ Scans | $\theta_{\text {max }}=25.97^{\circ}$ |
| Absorption correction: none | $h: 0 \rightarrow 11, k:-11 \rightarrow 10, l:-11 \rightarrow 9$ |
| 2516 Measured reflections | 2 standard reflections |
| 2360 Independent reflections | Frequency: 60 min |
| 1823 Observed reflections: $I>2 \sigma(I)$ | Intensity decay: $0.6 \%$ |
| Refinement |  |
| Refinement on $F^{2}$ | $(\Delta / \sigma)_{\text {max }}<10^{-3}$ |
| $R\left(F^{2}>2 \sigma\left(F^{2}\right)\right)=0.0482$ | $(\Delta \rho)_{\text {max }}=0.620 \mathrm{e}^{\AA^{-3}}$ |
| $W R\left(F^{2}\right)=0.1319$ | $(\Delta \rho)_{\text {min }}=-0.527 \mathrm{e} \AA^{-3}$ |
| $S=1.15$ | Extinction correction: SHELX (10-11) |
| 2360 Reflections | Extinction coefficient: $0.005(4)$ |
| 227 Parameters | Scattering Factors from |
| with restrictions: $d_{\mathrm{N} 2-\mathrm{H}}=$ $d_{\mathrm{C} 3-\mathrm{H}}=1 . \AA(12)$ | International Tables |
| $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)\right.$ | For crystallography: |
| $\left.+(0.0555 P)^{2}+0.6762 \mathrm{P}\right]$ | (1992, Vol. C, tables 4.2.6.8 |
| with $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$ | and 6.1.1.4) |

TABLE 2
Fractional Atomic Coordinates and Equivalent Isotropic Displacement Parameters, $U_{\text {eq }}=\left(\frac{1}{3}\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} a_{i} a_{j}$

| Atoms | $x / a$ | $y / b$ | $z / c$ | $U_{\text {eq }}$ |
| :---: | :---: | :---: | :---: | :---: |
| P1 | 0.2114(1) | 0.1318(1) | 0.2465(1) | 0.0223(2) |
| P2 | -0.1025(1) | -0.1789(1) | 0.1136(1) | 0.0224(2) |
| $\mathrm{O}_{\mathrm{E} 11}$ | 0.4052(3) | 0.1790(3) | 0.2980(3) | $0.0343(6)$ |
| $\mathrm{O}_{\mathrm{E} 21}$ | 0.1545(3) | 0.1675(3) | 0.3608(3) | 0.0314(6) |
| $\mathrm{O}_{\mathrm{E} 12}$ | -0.1284(4) | -0.3344(3) | 0.1973(3) | 0.0411(7) |
| $\mathrm{O}_{\mathrm{E} 22}$ | -0.2138(3) | -0.0951(3) | 0.1008(3) | $0.0276(5)$ |
| $\mathrm{O}_{\mathrm{L} 12}$ | 0.1093(3) | -0.0609(3) | $0.2026(3)$ | $0.0265(5)$ |
| $\mathrm{O}_{\mathrm{L} 21}$ | 0.1229(3) | 0.2050(3) | 0.0681(3) | 0.0273(5) |
| $\mathrm{O}_{\mathrm{w} 1}$ | 0.0688(4) | -0.5124(4) | $0.2996(4)$ | 0.0458(7) |
| $\mathrm{O}_{\mathrm{W} 2}$ | $-0.3176(5)$ | -0.5178(4) | 0.3801(4) | 0.0533(8) |
| N1 | -0.1909(4) | 0.1902(4) | 0.2064(4) | 0.0274(6) |
| N2 | $-0.5704(5)$ | $-0.3150(5)$ | 0.2400 (5) | 0.055(1) |
| C1 | -0.2239(5) | 0.1303(5) | 0.3590(4) | 0.0321(8) |
| C2 | $-0.3978(5)$ | -0.0180(5) | 0.3280 (5) | 0.0327(8) |
| C3 | -0.3895(4) | -0.1686(4) | 0.3038(3) | 0.0161(6) |
| C4 | -0.7163(5) | -0.2851(5) | 0.0820(5) | 0.0360(9) |
| C5 | $-0.3320(5)$ | 0.2331(5) | 0.0650(4) | 0.0300(8) |
| H1W1 | 0.129(7) | $-0.505(6)$ | 0.406(7) | 0.05(2) |
| H2W1 | 0.016(7) | $-0.438(7)$ | 0.284(7) | 0.07(2) |
| H1W2 | $-0.267(6)$ | -0.470 (6) | 0.313(6) | 0.04(2) |
| H2W2 | $-0.443(9)$ | $-0.631(9)$ | 0.340(8) | 0.11(3) |
| H1N1 | -0.093(6) | 0.277(5) | 0.230(5) | 0.03(1) |
| H2N1 | $-0.174(5)$ | 0.132(5) | 0.171(5) | 0.03(1) |
| H1N2 | $-0.619(7)$ | -0.349 (6) | 0.350(7) | 0.07(2) |
| H2N2 | -0.50(1) | $-0.421(9)$ | 0.246(9) | 0.15(3) |
| H1C1 | $-0.124(6)$ | 0.108(5) | 0.439(5) | 0.04(1) |
| H 2 C 1 | $-0.237(5)$ | 0.210 (5) | 0.388(5) | 0.03(1) |
| H 1 C 2 | $-0.498(5)$ | -0.017(5) | 0.239(5) | 0.03(1) |
| H2C2 | $-0.427(5)$ | -0.037(5) | 0.417(5) | 0.029(9) |
| H1C3 | $-0.316(5)$ | $-0.188(5)$ | 0.407(2) | 0.04(1) |
| H2C3 | $-0.331(5)$ | $-0.144(5)$ | 0.239(4) | 0.04(1) |
| H 1 C 4 | $-0.744(5)$ | -0.201(5) | 0.102(4) | 0.021(9) |
| H2C4 | $-0.822(8)$ | $-0.383(7)$ | 0.046(7) | 0.08(2) |
| H1C5 | -0.450(6) | $0.141(5)$ | 0.029(5) | 0.028(9) |
| H2C5 | $-0.344(6)$ | 0.318(5) | 0.105(5) | 0.04(1) |

observed for others cyclotetraphosphates known to date (13-15). The $\mathrm{P}-\mathrm{O}_{\mathrm{E}}\left(\mathrm{O}_{\mathrm{E}}\right.$, external oxygen of $\left.\mathrm{P}_{4} \mathrm{O}_{12}\right)$ average distances [1.479(3); 1.481(3) $\AA$ ] are shorter than the $\mathrm{P}-\mathrm{O}_{\mathrm{L}}$ ( $\mathrm{O}_{\mathrm{L}}$, oxygen of the $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bridge) distances [1.616(2); 1.603(3) $\AA$ ].

Distortion indices of various distances and angles in the two $\mathrm{P}(1) \mathrm{O}_{4}$ and $\mathrm{P}(2) \mathrm{O}_{4}$ tetrahedra, calculated according to Baur's method (16), are $\operatorname{ID}(\mathrm{P}-\mathrm{O})=0.0444$ and 0.0394 ; $\mathrm{ID}(\mathrm{O}-\mathrm{O})=0.0096$ and $0.0142 ; \operatorname{ID}(\mathrm{O}-\mathrm{P}-\mathrm{O})=0.0371$ and 0.0378 , respectively. This shows a strong distortion of the $\mathrm{P}-\mathrm{O}$ distances compared to $\mathrm{O}-\mathrm{O}$ ones. However, averages of the $\mathrm{P}-\mathrm{O}(1.547 ; 1.542 \AA)$ and $\mathrm{O}-\mathrm{O}(2.519 ; 2.510 \AA)$ distances of the two independent $\mathrm{PO}_{4}$ tetrahedra remain practically the same compared to those observed for condensed phosphates $(17,18)$. This is probably due to the significant difference between the $\mathrm{P}-\mathrm{O}_{\mathrm{L}}$ and $\mathrm{P}-\mathrm{O}_{\mathrm{E}}$ distances, and to the participation of external oxygen atoms in the hydrogen


FIG. 1. Projection along the c axis of the $\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ structure. By order of decreasing sizes, the circles represent oxygen, nitrogen, carbon and hydrogen atoms. Hydrogen atoms of the organic molecule are omitted.
bonds network. Thus, one can admit that $\mathrm{PO}_{4}$ tetrahedra of the $\mathrm{P}_{4} \mathrm{O}_{12}$ cycle is described by a regular arrangement of oxygen atoms with a slight shift of phosphorus atoms from the center of gravity. Instead of a $-43 m$ ideal symmetry, the local symmetry of the studied $\mathrm{PO}_{4}$ tetrahedra would be $3 m$.

TABLE 3
Main Interatomic Distances ( $\AA$ ) and Bond Angles $\left({ }^{\circ}\right)$ in the $\mathrm{P}_{4} \mathrm{O}_{12}$ Ring

| $\mathrm{P}(1) \mathrm{O}_{4}$ tetrahedron |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| P1 | $\mathrm{O}_{\text {E11 }}$ |  | $\mathrm{O}_{\mathrm{E} 21}$ | $\mathrm{O}_{\text {L12 }}$ | $\mathrm{O}_{\mathrm{L} 21}$ |
| $\mathrm{O}_{\mathrm{E} 11}$ | 1.474(3) |  | 119.8(2) | 106.4(2) | 110.9(2) |
| $\mathrm{O}_{\mathrm{E} 21}$ | $2.558(3)$ |  | 1.483(2) | 109.0(2) | 106.9(2) |
| $\mathrm{O}_{\mathrm{L} 12}$ | $2.479(4)$ |  | $2.486(3)$ | 1.621(2) | 102.6(2) |
| $\mathrm{O}_{\mathrm{L} 21}$ | 2.541(3) |  | 2.527(3) | 2.521(3) | 1.611(2) |
| $\mathrm{P}(2) \mathrm{O}_{4}$ tetrahedron |  |  |  |  |  |
| P2 | $\mathrm{O}_{\mathrm{E} 12}$ |  | $\mathrm{O}_{\mathrm{E} 22}$ | $\mathrm{O}_{\mathrm{L} 12}$ | $\mathrm{O}_{\text {L21 }}$ |
| $\mathrm{O}_{\mathrm{E} 12}$ | 1.472(3) |  | 119.0(2) | 107.5(2) | 107.6(2) |
| $\mathrm{O}_{\mathrm{E} 22}$ | 2.554(4) |  | 1.490(2) | 110.3(2) | 110.7(2) |
| $\mathrm{O}_{\mathrm{L} 12}$ | 2.482(4) |  | 2.539(3) | 1.603(3) | 100.1(2) |
| $\mathrm{O}_{\mathrm{L} 21}$ | 2.483(3) |  | 2.545 (3) | $2.458(3)$ | 1.602(2) |
| P1-P2 | P1-P2 | P2-P1-P2 | $2 \mathrm{P} 1-\mathrm{P} 2-\mathrm{P} 1$ | $\mathrm{P} 1-\mathrm{O}_{\mathrm{L} 12}-\mathrm{P} 2$ | $\mathrm{P} 1-\mathrm{O}_{\mathrm{L} 21}-\mathrm{P} 2$ |
| 2.932(2) $\AA$ | $2.925(2)$ Å | $80.24(5)^{\circ}$ | 99.76(5) ${ }^{\circ}$ | 130.9(2) ${ }^{\circ}$ | 131.1(2) ${ }^{\circ}$ |
| $\mathrm{O}_{\mathrm{w} 1}-\mathrm{H} 1 \mathrm{~W}$ | $1=0.83(5)$ |  | $\mathrm{O}_{\mathrm{W} 1}-\mathrm{H} 1 \mathrm{~W} 2=0.89(5) \AA$ |  |  |
| $\mathbf{O}_{\mathrm{W} 1}-\mathrm{H} 2 \mathrm{~W}$ | $1=1.00(6)$ |  | $\mathrm{O}_{\mathrm{W} 2}-\mathrm{H} 2 \mathrm{~W} 2=1.12(7) \AA$ |  |  |
| H1W1-Ow | ${ }_{1}-\mathrm{H} 2 \mathrm{~W} 1=$ | 100(4) ${ }^{\circ}$ | $\mathrm{H} 1 \mathrm{~W} 2-\mathrm{O}_{\mathrm{w} 2}-\mathrm{H} 2 \mathrm{~W} 2=121(4)^{\circ}$ |  |  |

It is important to note that a recent review of the various geometries observed in this kind of condensed phosphates shows that the $\mathrm{P}_{4} \mathrm{O}_{12}$ ring in this structure presents the strongest distortion (15, 17-21). Indeed, the angle values of the square formed by the four phosphorus atoms are $80.24(5)^{\circ}$ and $99.76(5)^{\circ}$. To date, the most accentuated distortion of $\mathrm{P}_{4} \mathrm{O}_{12}$ has been observed in the structure of $\left[\mathrm{H}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{3}\right]_{2} \mathrm{P}_{4} \mathrm{O}_{12} .2 \mathrm{H}_{2} \mathrm{O}$ (angle values: 81.11 ${ }^{\circ}$, 98.89 ${ }^{\circ}$ (19).

Furthermore, the atomic arrangement of $\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4}$ $\mathrm{P}_{4} \mathrm{O}_{12} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ contains only one independent $\left(\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4}\right)^{4+}$ cation. It is localized around the $(1 / 200)$ inversion center. Its geometrical characteristics are reported in Table 4. $\mathrm{N}-\mathrm{C}$, $\mathrm{C}-\mathrm{C}$ distances, and $\mathrm{N}-\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{N}-\mathrm{C}, \mathrm{C}-\mathrm{C}-\mathrm{C}$ angles correspond also to values generally observed in this family of materials (7, 22, 23).

As shown in Fig. 2, the water molecules are connected as pairs. Each pair is connected by hydrogen bonds to three different $\mathrm{P}_{4} \mathrm{O}_{12}$ groups to form a two-dimensional layer parallel to the (001) plane. Among the four hydrogen of the two independent $-\mathrm{NH}_{2}$, only one establishes H -bond with an external oxygen of $\mathrm{P}_{4} \mathrm{O}_{12}$ group $\left(\mathrm{N}_{1}-\mathrm{H}_{2}-\mathrm{O}_{\mathrm{E} 22}\right.$ with $d_{\mathrm{N} 1-\mathrm{OE} 22}=2.850(5) \AA$ ), forming infinite arrangements along the [100] direction. The remaining hydrogen atoms are connected to the oxygen atoms of the water molecules $\left(\mathrm{O}_{\mathrm{w}}\right)$. Thus, a 3D network of hydrogen bonds is formed. Table 5 gives main geometrical features of the H -bond scheme.

In this structure, the water molecules play a very important role in the cohesion of the various groups, since they

TABLE 4
Bond Lengths ( $\AA$ ) and Angles ( ${ }^{\circ}$ ) in the Organic Cation

| N1-H1N1 | $0.86(4)$ | C1-H1C1 | $0.96(4)$ |
| :--- | :--- | :--- | :--- |
| N1-H2N1 | $0.77(4)$ | C1-H2C1 | $0.89(4)$ |
| N2-H1N2 | $1.00(4)$ | C2-H1C2 | $0.90(4)$ |
| N2-H2N2 | $1.00(4)$ | C2-H2C2 | $0.92(4)$ |
| N1-C1 | $1.496(5)$ | C3-H1C3 | $1.00(4)$ |
| N1-C5 | $1.487(4)$ | C3-H2C3 | $1.00(4)$ |
| N2-C3 | $1.515(5)$ | C4-H1C4 | $0.98(4)$ |
| N2-C4 | $1.523(5)$ | C4-H2C4 | $0.94(6)$ |
| C1-C2 | $1.505(6)$ | C5-H1C5 | $0.97(4)$ |
| C2-C3 | $1.488(5)$ | C5-H2C5 | $0.98(4)$ |
| C4-C5 | $1.514(5)$ |  |  |
| C5-N1-C1 | $116.1(3)$ | H1N1-N1-H2N1 | $103(4)$ |
| N1-C1-C2 | $114.7(3)$ | C5-N1-H1N1 | $104(3)$ |
| N1-C5-C4 | $110.0(3)$ | C1-N1-H1N1 | $111(3)$ |
| C3-C2-C1 | $113.1(3)$ | C5-N1-H2N1 | $108(3)$ |
| C3-N2-C4 | $113.4(3)$ | C1-N1-H2N1 | $113(3)$ |
| C2-C3-N2 | $114.9(3)$ | C3-N2-H1N2 | $107(3)$ |
| C5-C4-N2 | $114.1(3)$ | C4-N2-H1N2 | $109(3)$ |
| C3-N2-H2N2 | $96(4)$ | C4-N2-H2N2 | $124(4)$ |
| H1N2-N2-H2N2 | $107(4)$ | N1-C1-H1C1 | $107(3)$ |
| C2-C1-H1C1 | $109(3)$ | N1-C1-H2C1 | $104(3)$ |
| C2-C1-H2C1 | $106(3)$ | H1C1-C1-H2C1 | $116(4)$ |
| C3-C2-H1C2 | $105(3)$ | C1-C2-H1C2 | $116(3)$ |
| C3-C2-H2C2 | $105(3)$ | C1-C2-H2C2 | $112(3)$ |
| H1C2-C2-H2C2 | $104(4)$ | C2-C3-H1C3 | $105(3)$ |
| N2-C3-H1C3 | $109(3)$ | C2-C3-H2C3 | $107(3)$ |
| N2-C3-H2C3 | $114(3)$ | H1C3-C3-H2C3 | $107(4)$ |
| C5-C4-H1C4 | $106(2)$ | N2-C4-H1C4 | $112(2)$ |
| C5-C4-H2C4 | $106(4)$ | N2-C4-H2C4 | $109(4)$ |
| H1C4-C4-H2C4 | $110(4)$ | N1-C5-H1C5 | $111(3)$ |
| C4-C5-H1C5 | $109(2)$ | N1-C5-H2C5 | $109(3)$ |
| C4-C5-H2C5 | $112(3)$ | H1C5-C5-H2C5 | $106(3)$ |

intervene in seven hydrogen bonds out of eight established in the asymmetrical unit. Among these eight H -bonds, only three could be considered as strong according the well known Blessing's and Brown's criterion: $d_{\mathrm{N} 1-\mathrm{ow}_{1}}=$ $2.655(5) \AA, \quad d_{\mathrm{OW}_{1-\mathrm{OW}}^{2}}=2.685(5) \AA$ and $d_{\mathrm{OW} 1-\mathrm{OE} 12}=$ $2.724(4)(24,25)$. The five remaining hydrogen bonds are weak and their distances vary from $2.736(5)$ to $3.297(6) \AA$.

## Thermal Analysis

Figure 3 shows the simultaneously recorded differential thermal analysis and thermogravimetric analysis curves of the $\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ compounds.

The TG curve reveals three weight losses corresponding to the three endothermic peaks at 77,100 , and $166^{\circ} \mathrm{C}$ detected in the DTA curve. The first peak at $77^{\circ} \mathrm{C}$ corresponds to the departure of the first water molecule ( $\%$ water: experimental, 2.90; calculated, 3.04). The departure of the second water molecule is observed at $100^{\circ} \mathrm{C}$ ( $\%$ water: experimental, 3.16 ; calculated, 3.04 ). The peak at $166^{\circ} \mathrm{C}$ corresponds to the departure of the two remaining water molecules (\% water: experimental, 5.90; calculated, 6.07).


FIG. 2. Projection along the c axis of the $\mathrm{P}_{4} \mathrm{O}_{12}$ groups with water molecules. Hydrogen bonds are dotted.

This result confirms the hydrated character of the nominal compounds and the existence of four water molecules per unit formula. According to the H -bond scheme within the asymmetrical unit which shows the existence of several types of H -bonds having different forces, one can assume that the first and the second water departures correspond to the $\mathrm{O}_{\mathrm{w}_{2}}$ molecule, followed by the $\mathrm{O}_{\mathrm{w}_{1}}$ molecule which is much more connected to the network.
The last peak at $235^{\circ} \mathrm{C}$, which is accompanied by the final important weight loss corresponds to the product degradation.

## IR Spectroscopy

The IR spectrum of $\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ phosphate is illustrated in Fig. 4. Theoretically, the ideal symmetry of the $\left(\mathrm{P}_{4} \mathrm{O}_{12}\right)^{4-}$ cycle is $D_{4 \mathrm{~h}}$. As mentioned above, the symmetry of the studied ring is $C_{\mathrm{i}}$. According to the theoretical group analysis, the number of normal modes is 42 , given by the

TABLE 5
Bond Lengths ( $\AA$ ) and Angles $\left({ }^{\circ}\right)$ in the Hydrogen Bonding Scheme

| $\mathrm{O}(\mathrm{N})-\mathrm{H}-\mathrm{O}$ | $\mathrm{O}(\mathrm{N})-\mathrm{H}(\AA)$ | $\mathrm{H}-\mathrm{O}(\AA)$ | $\mathrm{O}(\mathrm{N})-\mathrm{O}(\AA)$ | $\mathrm{O}(\mathrm{N})-\mathrm{H}-\mathrm{O}\left({ }^{\circ}\right)$ |
| :--- | :---: | :---: | :---: | :---: |
| $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1-\mathrm{O}_{\mathrm{W} 1}^{(\mathrm{ij}}$ | $0.86(4)$ | $1.84(5)$ | $2.656(5)$ | $158(4)$ |
| $\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N} 1-\mathrm{O}_{\mathrm{E} 22}$ | $0.76(4)$ | $2.14(5)$ | $2.850(5)$ | $155(4)$ |
| $\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2-\mathrm{O}_{\mathrm{W} 1}^{(i i)}$ | $1.00(4)$ | $2.47(4)$ | $3.225(5)$ | $125(3)$ |
| $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} 2-\mathrm{O}_{\mathrm{W} 2}$ | $1.00(4)$ | $2.33(4)$ | $3.297(6)$ | $146(4)$ |
| $\mathrm{O}_{\mathrm{W} 1}-\mathrm{H} 1 \mathrm{~W} 1-\mathrm{O}_{\mathrm{W} 2}^{(\mathrm{iii)}}$ | $0.83(5)$ | $1.89(5)$ | $2.687(5)$ | $160(5)$ |
| $\mathrm{O}_{\mathrm{W} 1}-\mathrm{H} 2 \mathrm{~W} 1-\mathrm{O}_{\mathrm{E} 12}$ | $1.00(6)$ | $1.75(6)$ | $2.724(4)$ | $162(5)$ |
| $\mathrm{O}_{\mathrm{W} 2}-\mathrm{H} 1 \mathrm{~W} 2-\mathrm{O}_{\mathrm{E} 12}$ | $0.89(5)$ | $1.87(5)$ | $2.752(5)$ | $169(4)$ |
| $\mathrm{O}_{\mathrm{W} 2}-\mathrm{H} 2 \mathrm{~W} 2-\mathrm{O}_{\mathrm{E} 11}^{(\mathrm{iv} 1}$ | $1.12(7)$ | $1.63(8)$ | $2.736(5)$ | $165(6)$ |

[^1]

FIG. 3. TG-DTA Thermograms of the $\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 4 \mathrm{H}_{2} \mathrm{O}$.
reduced representation:

$$
\Gamma_{\mathrm{int}}=21 A_{\mathrm{u}}+21 A_{\mathrm{g}}
$$

The $A_{u}$ modes are active in the IR spectroscopy, whereas the $A_{\mathrm{g}}$ modes are active in RAMAN. The 21 IR-active modes could be divided into 8 stretching modes and 13 deformation modes.


FIG. 4. IR Spectrum of $\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ at 300 K .

We have already resolved the crystal structure and attributed the main bands in the IR spectrum of the (1,4$\left.\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{NH}_{3}\right)_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ cyclotetraphosphate in which the $\mathrm{P}_{4} \mathrm{O}_{12}$ ring has the same local symmetry $\left(\mathrm{C}_{\mathrm{i}}\right)$ (18). In order to attribute each band in the IR spectrum of $\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, we have compared in Table 6, the recorded frequencies with those observed in (1,4$\left.\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{NH}_{3}\right)_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\left(\mathrm{NH}_{2} \mathrm{NH}_{3}\right)_{4} \mathrm{P}_{4} \mathrm{O}_{12}$ cylotetraphosphates $(18,26)$. As can be seen, all the vibrational

TABLE 6
Vibrational Frequencies and Assignments in the $\mathrm{P}_{4} \mathrm{O}_{12}$ Stretching Regions: Comparison with Experimental Frequencies for $\left(\mathrm{NH}_{2} \mathrm{NH}_{3}\right) \mathrm{P}_{4} \mathrm{O}_{12}$ and $\left(\mathbf{1}-4, \mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{NH}_{3}\right)_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

| Movement | Site group |  | $\begin{gathered} \left(\mathrm{NH}_{2} \mathrm{NH}_{3}\right)_{4} \mathrm{P}_{4} \mathrm{O}_{12} \\ (26) \\ \bar{v}_{\text {obs }}\left(\mathrm{cm}^{-1}\right) \end{gathered}$ | $\begin{gathered} \left(1,4-\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{NH}_{3}\right)_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 6 \mathrm{H}_{2} \mathrm{O} \\ (18), \\ \bar{v}_{\text {obs }}\left(\mathrm{cm}^{-1}\right) \end{gathered}$ | $\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ <br> (This work), $\bar{v}_{\text {obs }}\left(\mathrm{cm}^{-1}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $C_{i}$ | IR |  |  |  |
| $v_{\mathrm{a}}\left(\mathrm{OPO}^{-}\right)$ | $A_{u}$ | $+$ | 1280 | 1277 (vs) | 1298 (vs) |
|  | $A_{u}$ | + | 1235 | 1260 (vs) | 1273 (vs) |
|  | $A_{g}$ | - |  |  |  |
|  | $A_{g}^{\delta}$ | - |  |  |  |
| $v_{\mathrm{s}}\left(\mathrm{OPO}^{-}\right)$ | $A_{u}$ | + | 1135 | 1115 (vs) | 1111 (vs) |
|  | $A_{u}$ | + | 1100 | 1098 (vs) | 1076 (s) |
|  | $A_{g}$ | - |  |  |  |
|  | $A_{g}$ | - |  |  |  |
| $v_{\mathrm{a}}(\mathrm{POP})$ | $A_{u}$ | + | 1000 | 993 (s) | 972 (b) |
|  | $A_{u}$ | + | 985 | 958 (vs) |  |
|  | $A_{g}$ | - |  |  |  |
|  | $A_{g}$ | - |  |  |  |
| $v_{\mathrm{s}}(\mathrm{POP})$ | $A_{u}$ | $+$ | 745 | 747 (s) | 724 (m) |
|  | $A_{u}$ | $+$ | 700 | 700 (s) | 690 (w) |
|  | $A_{g}$ | - |  |  |  |
|  | $A_{g}$ | - |  |  |  |

TABLE 7
Tentative Assignments of the Observed IR Frequencies Outside the Stretching Domain of $\mathrm{P}_{4} \mathrm{O}_{12}$ Rings

| $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}_{4} \mathrm{O}_{12} .6 \mathrm{H}_{2} \mathrm{O}(18)$ |  | $\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ |  |
| :---: | :---: | :---: | :---: |
| 3112 (w) | $\nu\left(\mathrm{H}_{2} \mathrm{O}\right)$ | 3443 (b) | $v\left(\mathrm{H}_{2} \mathrm{O}\right)$ |
| 3065 (w) | $+v(\mathrm{C}-\mathrm{H})$ | 3024 (w) | $+v\left(\mathrm{CH}_{2}\right)$ |
| 2914 (b) | $+v\left(\mathrm{NH}_{3}^{+}\right)$ | 2976 (w) | $+v\left(\mathrm{NH}_{2}^{+}\right)$ |
| 2666 (m) | $+v(\mathrm{OH})_{\text {ph }}$ |  |  |
| 1878 (w) | Combination | 1638 (s) | $\delta\left(\mathrm{H}_{2} \mathrm{O}\right)$ |
| 1834 (w) | bands ${ }^{a}$ | 1588 (s) | + |
| 1503 (s) | + | 1536 (w) | Combination |
| 1473 (m) | $v(\mathrm{C}=\mathrm{C})$ | 1512 (w) | bands ${ }^{a}$ |
| 1455 (m) | of the organic | 1488 (w) | + |
| 1386 (m) | cation | 1482 (m) | $\delta\left(\mathrm{CH}_{2}\right)$ |
| 1362 (m) |  | 1452 (w) |  |
| 1223 (s) | $v(\mathrm{C}-\mathrm{O})$ | 1428 (w) |  |
| 1172 (s) | $+v(\mathrm{C}-\mathrm{N})$ | 1392 (w) |  |
| 860 (w) | $+\delta(\mathrm{C}-\mathrm{H})$ in plan | 1355 (w) |  |
| 826 (s) |  |  |  |
| 666 (w) | $\delta(\mathrm{C}-\mathrm{H})$ out plan + $\delta(\mathrm{O}-\mathrm{H})_{\text {ph }}$ out plan | 928 (m) | $\begin{aligned} & v(\mathrm{C}-\mathrm{C}-\mathrm{N})+ \\ & v(\mathrm{C}-\mathrm{N}-\mathrm{C}) \end{aligned}$ |
| 650 (w) |  | 880 (m) |  |
|  |  | 816 (w) |  |
|  |  | 759 (w) |  |
| 574 (s) | ```Deformation vibrations + external modes``` | 560 (m) | Deformation vibrations $+$ external modes |
| 551 (m) |  | 526 (s) |  |
| 510 (s) |  | 404 (m) |  |
| 472 (m) |  |  |  |
| 446 (m) |  |  |  |
| 386 (m) |  |  |  |
| 358 (s) |  |  |  |

${ }^{a}$ Combination bands between C-H out of plane. w, weak; m, medium; b , broad; s , strong.
frequencies characteristic of the $\mathrm{P}_{4} \mathrm{O}_{12}$ cycle has been observed in the case of the $\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ compound. Nevertheless, special caution must be paid in attribution of $v_{\mathrm{as}}\left(\mathrm{OPO}^{-}\right)$and $v_{\mathrm{s}}(\mathrm{POP})$ vibration bands because of their possible overlapping with $v(\mathrm{C}-\mathrm{N})$ vibration and $\delta(\mathrm{C}-\mathrm{H})$ deformation vibration bands, respectively.

On the other hand, intensive bibliographic research (27, 28) allows us to attribute easily the remaining experimental vibration bands characteristic of the organic molecule. All these vibrational bands are assigned in Table 7.

## CONCLUSIONS

The crystal structure of the $\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ has been determined. Its symmetry is triclinic, space group $P-1, Z=1$. The structure of this organic-cation phosphate is organized as a succession of two types of layers. One contains only the water molecule, while the second contains simultaneously organic and inorganic groups. An intensive review of earlier works concerning organic-cation
cyclophosphates shows that the $\mathrm{P}_{4} \mathrm{O}_{12}$ cycle of this studied compound appears to present the strongest distortion known to date. Furthermore, the water molecules participate in seven of eight hydrogen bonds established in the asymmetrical unit. This shows the important role played by the water molecules in the cohesion and stability of this structure.

The hydrated character of $\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ phosphate is confirmed by the coupled TG-DTA technique, which shows the successive departure of water molecules. IR spectrum has been indexed by comparison with other studied cyclotetraphosphates. It shows that this material reveals several bands characteristic of $\mathrm{P}_{4} \mathrm{O}_{12}$ cycle and 1,4 , 8, 11-tetraazacyclotetradecane.

## REFERENCES

1. D. Gani and J. Wilkie, Chem. Soc. Rev. 24(1), 55 (1995).
2. Y. Kita, T. Kashitani, K. Kishino, and K. Nakagawa, Nippon Kagaku Kaishi 12, 971 (1995).
3. J. T. Wang, R. F. Savinell, J. Wainright, M. Litt, and M. Yu, Electrochem. Acta 41(2), 193 (1966).
4. S. Oliver, A. Kuperman, N. Coombs, A. Lough, and G. A. Ozin, Nature (London) 378, 47 (1995).
5. N. Coombs, D. Khushalani, S. Oliver, G. A. Ozin, G. C. Shen, I. Sokolov, and H. Yang, J. Chem. Soc. Dalton Trans. 21, 3941 (1997).
6. M. Casciola, U. Costantino, and S. D'Amico, Solid State Ionics 22, 17 (1986).
7. M. Bdiri and A. Jouini, Eur. J. Solid State Inorg. Chem. 26, 585 (1989).
8. Enraf-Nonius, "CAD-4 Software. Version 5.0." Enraf Nonius, Delft, The Netherlands, 1989.
9. C. K. Fair, MolEN "An Interactive Intelligent System for Crystal Structure Analysis" Enraf-Nonius, Delft, The Netherlands, 1990.
10. G. M. Sheldrick, Acta Crystallogr. A 46, 467 (1990).
11. G. M. Sheldrick, SHELXL93, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1993.
12. A. Weichel and T. Lis, Acta Crystallogr. C 48, 303 (1992).
13. M. T. Averbuch-Pouchot and A. Durif, J. Solid State Chem. 58, 119 (1985).
14. M. T. Averbuch-Pouchot, A. Durif, and J. C. Guitel, Acta Crystallogr. C 45, 428 (1989).
15. H. Thabet, A. Jouini, and E. H. Soumhi, Acta Crystallogr. C 53, 318 (1997).
16. W. Baur, Acta Crystallogr. B 30, 1195 (1974).
17. E. H. Soumhi and T. Jouini, Acta Crystallogr. C 52, 432 (1996).
18. E. H. Soumhi, I. Saadoune, A. Driss, and T. Jouini, J. Solid State Chem. 144, 318 (1999).
19. M. Bdiri and A. Jouini, Acta Crystallogr. C 46, 1454 (1989).
20. E. H. Soumhi, I. Saadoune, A. Driss, and T. Jouini, Eur. J. Solid State Inorg. Chem. 35, 629 (1998).
21. E. H. Soumhi, I. Saadoune, A. Driss, and T. Jouini, Acta Crystallogr. C 55, 1932 (1999).
22. A. Gharbi, A. Jouini, and A. Durif, J. Solid State Chem. 114, 42 (1995).
23. S. Kamoun, A. Jouini, and A. Daoud, Acta Crystallogr. C 46, 1481 (1990).
24. R. H. Blessing, Acta Crystallogr. B 42, 613 (1986).
25. I. D. Brown, Acta Crystallogr. A 32, 24 (1976).
26. H. Thabet, M. Bdiri, A. Jouini, and A. Durif, J. Solid State Chem. 101, 211 (1992).
27. K. Larafa, A. Mahjoub, M. Rzaigui, and A. Durif, Eur. J. Solid State Inorg. Chem. 34, 481 (1997).
28. Josien and Lebas, Bull. Soc. Chim. Fr. 53, 57 (1956).

[^0]:    ${ }^{1}$ To whom correspondence should be addressed. Fax: 2124433170. E-mail: eh_soumhi@fstg-marrakech.ac.ma.

[^1]:    Note. (i) $x, 1+y, \quad z ; \quad$ (ii) $\quad-1+x, \quad y, \quad z ; \quad$ (iii) $\quad-x,-1-y, 1-z$; (iv) $-1+x,-1+y, z$.

